Gymnasium

1. Physikschulaufgabe

Klasse 10

- 1. a) Erkläre, weshalb die "Methode der kleinen Schritte" (MekS) für die Beschreibung des freien Falls (ohne Luftwiderstand) nicht notwendig ist.
 - b) Beschreibe und begründe, wie sich die Geschwindigkeit eines frei fallenden Körpers unter Berücksichtigung des Luftwiderstandes im Lauf der Zeit verändert.
 - c) Gegeben ist folgender Ausschnitt eines Tabellenkalkulationsprogramms zur Dateneingabe für die MekS zum freien Fall:

	Α	В	С	D
1	Zeit t	Beschleunigung a	Geschwindigkeit v	Weg y
2	0	- 9,81	0	0
3	= A2 + 0.01	= B2 + 0,03 • C2 • C2	$= C2 + B3 \cdot 0.01$	$= D2 + C3 \cdot 0.01$

Berechne die Geschwindigkeit nach 0,01 s und die Beschleunigung nach 0,02 s mit jeweils 4 Stellen nach dem Komma. Beim berechnen dürfen die Einheiten wegbleiben; sie sind erst beim Ergebnis anzugeben.

- **2.** Eine S-Bahn beschleunigt gleichmäßig aus dem Stand 9,0 s lang mit $a = 1,4 \text{ m s}^{-2}$.
 - a) Berechne die Geschwindigkeit der S-Bahn nach der Beschleunigungsphase. Berechne die Länge der Beschleunigungsstrecke.
 - b) Auf einem Brückenabschnitt muss die Bahn wegen Reparaturarbeiten an der Brücke 16 s lang bremsen, um die Geschwindigkeit 12 km/h zu erreichen.
 Berechne die notwendige Bremsbeschleunigung.
- 3. Der Lokführer eines Schnellzugs erleidet während der Fahrt plötzlich einen Schwächeanfall. Die Sicherheitsfahrschaltung der Lok leitet 6,00 s später eine Notbremsung mit einer Bremsverzögerung von 2,50 m/s² ein. 18,0 s danach steht der Zug.
 - a) Von welcher Reisegeschwindigkeit (in km/h) und auf welchem Bremsweg kommt der Zug zum Stehen?
 - b) Welchen Weg legte der Zug in der Reisegeschwindigkeit vom Schwächeanfall bis zur Zwangsbremsung zurück?
 - c) Wie groß war die Bremskraft, wenn der gesamte Zug eine Masse von 250 t hat?
- 4. a) Wie würdest du mit Hilfe eines Versuchs feststellen können, ob die Periodendauer eines Federpendels von seiner Amplitude abhängt, wenn du es mit dem bloßen Auge nicht erkennen kannst?
 - b) Zeichne für einen schwingenden Körper das y-t-Diagramm mit der Amplitude A = 2 und der Periodendauer T = 5 s. Der schwingende Körper befindet sich bei t = 0 in Ruhelage, aber auf dem Weg nach unten.
 - c) Die Periodendauer eines Fadenpendels mit der Länge I sei T. Beschreibe oder berechne, wie groß im Vergleich zu T die Periodendauer dieses Pendels auf dem Mond wäre.

$$g_{Mond} = \frac{g_{Erde}}{6}$$