Realschule

4. Mathematikschulaufgabe

Klasse 10 / II

- **1.0** Die Parabel p ist Graph der Funktion f mit $y = x^2 2x + 3$.
- 1.1 Bestimme den Scheitel S der Parabel. Zeichne die Parabel p und die Punkte B (-4/5) und D (1/-2) in ein Koordinatensystem. Für die Zeichnung: $-7 \le x \le 5$; $-3 \le y \le 8$; 1 LE = 1cm
- 1.2 Der Punkt A liegt auf der Parabel p, so daß eine Raute ABCD entsteht. Zeichne die Raute ABCD in das Koordinatensystem zu 1.1 ein.
- **1.3** Berechne die Koordinaten der Punkte A und C (1 Kommastelle). (Teilergebnis: A (2,5 / y))
- **1.4** Berechne die Winkel und den Flächeninhalt der Raute ABCD (1 Kommastelle).
- 1.5 Zeichne den Inkreis der Raute und berechne den Inkreisradius (1 Kommastelle).
- 2.0 Gegeben ist die Gerade g mit der Gleichung y = 1,25x + 8. Sie schneidet die x-Achse im Punkt P und die y-Achse im Punkt Q. Der Punkt A sei der Koordinatenursprung.
- Zeichne die Gerade g in ein Koordinatensystem, und berechne das Maß des Winkels APQ.

 Für die Zeichnung: $-1 \le x \le 7$; $-1 \le y \le 8$; 1 LE = 1 cm
- 2.2 Der Punkt C wandert auf der Geraden g von Q nach P und legt Rechtecke $AB_nC_nD_n$ mit $B_n\in x$ -Achse fest. Zeichne ein beliebiges Rechteck ABCD in das Koordinatensystem ein.
- 2.3 Die Rechtecke $AB_nC_nD_n$ rotieren um die y-Achse. Stelle die Mantelfläche der entstehenden Rotationskörper in Abhängigkeit von der x-Koordinate der Punkte C_n dar. (Ergebnis: $A(x) = \pi$ (2,5 x^2 + 16 x) FE)
- 2.4 Aus dem Dreieck APQ werden die Rechtecke AB_nC_nD_n herausgeschnitten. Die verbleibenden Restflächen rotieren ebenfalls um die y-Achse. Stelle den Rauminhalt der entstehenden Rotationskörper in Abhängigkeit von der x-Koordinate der Punkte C_n dar.

1 LE auf der V-Achse = 50 VE

(Ergebnis: $V(x) = \pi$ (1,25 x^3 - 8 x^2 + 109,23) VE)

- 2.5 Tabellarisiere V(x) im Intervall [0; 6] mit $\Delta x = 1$ (1 Kommastelle), und stelle die Abhängigkeit graphisch dar. Für die Zeichnung: 1 LE = 1cm; 1 LE auf der x-Achse = 1 cm
- Zeichne auf der x-Achse des Graphen zu 2.5 den Bereich ein, für den V(x) kleiner als 250 VE ist.
- 2.7 Berechne den Inhalt der Oberfläche des Rotationskörpers von 2.4 für den Punkt C_1 mit x = 2,5.

weiter siehe Blatt 2

- 3.0 Durch die Punkte A (0 / 0) , B_n (2 x / 0) und D_n (x / $-\frac{1}{3}$ x + $\frac{10}{3}$) sind Dreiecke AB_nD_n festgelegt.
- 3.1 Berechne für $x_1 = 2,5$ die Koordinaten der Punkte B_1 und D_1 und für $x_2 = 4$ die Koordinaten der Punkte B_2 und D_2 . Zeichne das Dreieck AB_1D_1 sowie das Dreieck AB_2D_2 in ein Koordinatensystem. Für die Zeichnung: $-1 \le x \le 13$; $-1 \le y \le 5$; 1 LE = 1 cm
- 3.2 Alle Punkte D_n liegen auf einer Geraden g; gib die Gleichung für g an.
- **3.3** Bestimme für x den Definitionsbereich.
- **3.4** Zeige durch Rechnung: alle Dreiecke AB_nD_n sind gleichschenklig mit der Basis [AB_n].
- 3.5 Zeige: für die Länge \overline{AD}_n der Schenkel $[AD_n]$ gilt: $\overline{AD}_n = \frac{1}{3}\sqrt{10\,x^2 20\,x + 100}$ LE.
- 3.6 Unter den in 3.0 beschriebenen Dreiecken AB_nD_n gibt es ein Dreieck AB₃D₃ mit minimaler Schenkellänge AD₃. Berechne AD₃, sowie die Koordinaten von B₃ und D₃, und zeichne das Dreieck AB₃D₃ ein.
- 3.7 Jedes Dreieck AB_nD_n kann zu einem Parallelogramm $AB_nC_nD_n$ ergänzt werden ($x_{Cn} > 0$). Zeichne das Parallelogramm $AB_1C_1D_1$ sowie das Parallelogramm $AB_2C_2D_2$ ein.
- 3.8 Gib die Koordinaten aller Punkte C_n in Abhängigkeit der Abszisse x der Punkte D_n an.

(Pkt. 3.0 bis 3.6 ähnlich Abschlußprüfung 1978 Bayern, Gruppe B, Pkt. 2.0 ... 2.4)