
Realschule

2. Mathematikschulaufgabe

Klasse 10 I

- **1.0** Gegeben ist die Funktion f mit $y = \log_{0.3}(4 0.8x)$
- **1.1** Geben Sie die Definitionsmenge und die Wertemenge der Funktion sowie die Gleichung der Asymptote des Graphen an.
- **1.2** Bestimmen Sie die Gleichung der Umkehrfunktion f⁻¹ von f.
- Zur Hochzeit bekommt Emma von Ihrem Onkel 5000 €, die sie Anfang des Jahres 2018 bei Ihrer Bank anlegt. Der Zinssatz bleibt über die gesamte Laufzeit konstant. Zum Ende der Laufzeit im Jahr 2056 wird Emmas Guthaben auf 7028 € angewachsen sein.
- Zeigen Sie durch eine Rechnung, dass sich das Guthaben in € durch die Funktion f_1 : $y = 5000 \cdot 1,009^x \ \left(G = \mathbb{R}_0^+ \ x \ \mathbb{R}^+\right)$ darstellen lässt.
- 2.2 Berechnen Sie das Guthaben von Emma im Jahr 2030 auf Ganze gerundet.
- 2.3 Im Jahr 2010 hat Ehemann Ludwig 4500 € bei seiner Hausbank zu einem festen Zinssatz von 3,8% angelegt. Sein Guthaben kann ab dem Jahr 2018 durch die Funktion f₂: y = 4500 · 1,038^{x+8} dargestellt werden.
 Berechnen Sie (ohne die Grafikfunktion eines GTR) nach wie vielen Jahren (vom Jahr 2018 an) Ludwigs Guthaben doppelt so groß ist, wie das von Emma.
- 3.0 Im Dreieck ABC mit $\overline{AB}=15$ cm , $\overline{BC}=12$ cm und $\beta=60^\circ$ teilt der Punkt D die Strecke [AB] im Verhältnis 3 : 2; d.h., es gilt $\overline{AD}:\overline{DB}=3:2$. Der Punkt E ist Mittelpunkt der Strecke [BC], die Punkte F_n wandern auf [AC], die Winkel F_nDA haben das Maß δ .
- 3.1 Berechnen Sie das Maß des Winkels α [Ergebnis: $\alpha = 49,1^{\circ}$]
- 3.2 Berechnen Sie die Länge der Strecke [DF_n] in Abhängigkeit von δ . [Ergebnis: $\overline{DF_n}(\delta) = \frac{6.8}{\sin(49.1^\circ + \delta)}$ cm]
- 3.3 Die Strecke [DF $_0$] hat minimale Länge. Bestimmen Sie das zugehörige Winkelmaß δ_0 .
- 3.4 Berechnen Sie die Länge der Strecke [DF₂] wenn gilt: [EF₂] II [AB].
- 3.5 Stellen Sie die Fläche der Dreiecke DEF_n in Abhängigkeit von δ dar.

3.6 Für welche Belegung von δ hat das Dreieck DEF₃ einen Flächeninhalt von 18 cm²? Lösen und dokumentieren Sie mithilfe eines GTR.